Вычисление массы фотона

Е.Г. Якубовский.

e-mail yakubovski@rambler.ru

Электромагнитное и гравитационное поле состоит из частиц вакуума, т.е. имеет массу. Причем плотность электромагнитного поля не отличается от плотности вакуума. Считая размер фотона равным комптоновской длине волны получим массу фотона.

Масса фотона

Плотность фотона составляет долю плотности вакуума $\rho_{\gamma} = 10^{-29} \, g \, / \, cm^3$. При фотона определяется границей применимости предел размера ЭТОМ классического радиуса фотона $\lambda_F = \frac{\hbar}{m_F c}$. Радиус электрона, определяющий применимость классической электродинамики, когда при меньшей длине волны образуются электрон-позитронный пары равен $\lambda = \frac{\hbar}{m c}$. Радиус фотона для образования электрон-позитронной пары должен быть в $\lambda_F/\lambda_e=m_e/m_F$ раз больше. Значит, при этом радиусе фотона электрон-позитронные пары не образуются и предел применимости квантовой электродинамики не достигнут. Если количество протонов и фотонов в вакууме одинаково, то доля фотонов в плотности вакуума m_F/m_n . Тогда плотность фотона равна $ho_{\gamma} rac{m_F}{m_p} = rac{m_F}{\lambda^3} = rac{m_F^4 c^3}{\hbar^3}$, причем эта величина определяет долю плотности вакуума. Причем плотность фотона составляет малую долю плотности Откуда получаем верхний предел значения массы фотона $m_F < \rho_{\gamma}^{1/3} \hbar / c m_p^{1/3} = 5.86 \cdot 10^{-40} g$.

При этом масса фотона связана с массой, определяемой по длине волны соотношением

$$\frac{m_F}{m} = \frac{m_F c \hbar}{\hbar} = \frac{5,86 \cdot 3 \cdot 10^{-40+10-5}}{10^{-27}} = 1.8 \cdot 10^{-7} = \sqrt{1 - V^2 / c^2},$$

$$\delta V / c = -(\frac{m_F c \hbar}{\hbar})^2 \frac{\delta \hbar}{\hbar} = 4 \cdot 10^{-14} \delta \lambda / \lambda; \lambda = 10^{-5} cm$$

Переносчиками электромагнитной энергии являются частицы вакуума. естественно принять за массу одного кванта фотона массу частицы вакуума. Масса фотона мнимая, причем ее малое значение определяет большое время жизни. Справедлива формула

$$\frac{m_F V}{p\sqrt{1-V^2/c^2}} = 1, V/c = 1/\sqrt{1+(\frac{m_F c \hbar}{\hbar})^2} = 1/\sqrt{1+(\frac{\hbar}{\hbar})^2}$$
, что определяет

максимальную длину волны электромагнитного поля

$$\lambda_{\text{max}} = \frac{\hbar}{cm_F} = \frac{\hbar}{cm_\gamma} = \frac{10^{-27}}{3 \cdot 10^{10} i 10^{-67}} = -3.3i \cdot 10^{29} cm = -3.3i \cdot 10^{24} km$$
 при

максимальной длине волны $100 \ km$ сверхдлинных электромагнитных волн. Масса частицы вакуума определяется по приближенной формуле $m_F = m_\gamma = i \rho_\gamma r_\gamma^3 = i 10^{-67}$, где плотность вакуума равна

$$\rho_{\gamma} = 10^{-29} \varepsilon / c M^3, r_{\gamma} = \frac{e^2}{m_e c^2}$$
см. [1] стр.67. Скорость фотона, пройдя через

бесконечное значение, образует комплексную скорость, которая стремится к нулю. Такое изменение скорости фотона, это общее свойство нелинейных обыкновенных дифференциальных уравнений. При наличии комплексных координат положения равновесия, решение стремится к бесконечности, нарушаются условия существования и единственности решения, и образуется комплексное решение. Статическое поле формируется при его образовании, а далее статическое поле неизменно. Не даром вектор Умова-Пойнтинга для статического электрического поля равен нулю.

Верхний предел массы фотона, полученный из астрономических наблюдений $m_F < 3 \cdot 10^{-60} \, \varepsilon$ см. [2].

Необходимо сказать, что вычислять массу фотона надо по электромагнитным волнам, так как статическое поле убывает как величина $E \sim \frac{1}{r^2} \,,\, \text{а электромагнитная волна как } E \sim \frac{1}{r} \,.$

При расстоянии до звезд $10^{18} cm$ это приводило бы к запаздыванию сигнала

$$\delta t = \frac{L}{c^2} \delta V = \frac{L}{c} (\frac{m_F c \hbar}{\hbar})^2 \frac{\delta \hbar}{\hbar} = \frac{10^{18}}{3 \cdot 10^{10}} 4 \cdot 10^{-14} 0.1 = 1.3 \cdot 10^{-7} \, s, \delta \lambda = 10^{-6} \, cm \, . \qquad \text{При}$$

этом земля поворачивается на угол $\delta \varphi = 7.3 \cdot 10^{-5} 1.3 \cdot 10^{-7} \cdot 180^{\circ} / \pi = 5.44 \cdot 10^{-10_{\circ}}$. Но картина звездного неба статична, и поворачивается как единое целое, так как звезды видны под бесконечно малым углом. Но в случае короткой звездной вспышки с разными когерентными частотами, она бы размазалось на $5.44 \cdot 10^{-10}$ градусов в виде радуги.

Такие когерентные источники есть, это пульсары, но измеряют сигнал на одной частоте, и значит размазывание за счет конечной массы фотона не замечается. Если измерить сигнал на разных частотах, то должно проявиться запаздывание сигнала на другой частоте. А по запаздыванию сигнала можно оценить верхний предел значения массы фотона. При угле размазывания $\delta \varphi < 10^{-5}$ ° невозможно его обнаружить.

Такое значение массы фотона согласуется с оценкой, приведенной ниже по тексту. Постоянная Планка равняется моменту импульса частиц вакуума

$$\hbar = m_{\gamma} r_{\gamma}^2 \omega_{\gamma} N; \omega_{\gamma} = \frac{137c}{Nl_{\gamma}}.$$

Кроме того, выполняется закон сохранения энергии при образовании частиц вакуума, т.е. энергия электрона и позитрона, образующих частицу вакуума, равно ее энергии покоя плюс энергия вращения

$$(2m_e - m_{\gamma})c^2 = 2\hbar\omega_e = m_{\gamma}r_{\gamma}^2\omega_{\gamma}^2/(1 - r_{\gamma}^2\omega_{\gamma}^2/c^2).$$

Откуда имеем $\frac{r_{\gamma}^2 \omega_{\gamma}^2}{c^2} = \frac{1}{1 + \frac{m_{\gamma}}{2m_e - m_{\gamma}}}$, откуда имеем количество не когерентных

частиц, образующих спин

$$N = \frac{\hbar \sqrt{m_{\gamma}/2m_e}}{m_{\gamma}r_{\gamma}c} = \frac{\hbar}{\sqrt{2m_{\gamma}m_e}r_{\gamma}c} = 2 \cdot 10^{22} < \frac{2m_e}{m_{\gamma}} = 2 \cdot 10^{40}; m_{\gamma} = 10^{-67} g$$

Количество не когерентных частиц вакуума образующих спин самой легкой частицы электрона в 10^{18} раз меньше общего количества частиц вакуума в этой элементарной частице - электроне. Значит фотон и нейтрино, имеющие спин ½ и содержащие когерентные частицы вакуума, должны иметь массу большую, чем $m_F = 10^{-18} m_e = 10^{-45} g$. Эта оценка масс элементарных частиц. За массу фотона можно принять массу частицы вакуума, которые являются переносчиками электромагнитной энергии.

Литература

- 1. Якубовский Е.Г. ЧАСТИЦЫ ВАКУУМА, ОПИСЫВАЮЩИЕ СВОЙСТВА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ПОЛЯ Реферативный журнал «Научное обозрение» 2016, т.2, стр.58-80, http://science-review.ru/abstract/pdf/2016/2/662.pdf
- 2. Чибисов Г.В. Астрофизические верхние пределы на массу покоя фотона. УФН, Т.119 вып.3 1976г.